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Abstract
Irreducible representations of Birman–Wenzl algebras Cf (r, q) in the non-
standard basis are discussed. A procedure for evaluating subduction
coefficients (SDCs), or the transformation coefficients between standard and
non-standard basis of Birman–Wenzl algebras, is formulated based on the
linear equation method. SDCs of Cf (r, q) with f � 4 are derived. Racah
coefficients of the quantum groups Oq(n) and Spq(2m) can be obtained from
SDCs of Birman–Wenzl algebras Cf (r, q) by using the Schur–Weyl–Brauer
duality relation between Birman–Wenzl algebras Cf (r, q) and the quantum
groups Oq(n) and Spq(2m).

PACS number: 02.20.Qs

1. Introduction

The Birman–Wenzl algebrasCf (r, q), where r and q are two complex parameters, and f ∈ N ,
were first presented in [1], which is related to some new link polynomials in the knot theory.
Cf (r, q) is also a special algebraic realization of braid groups. It has been found that the algebra
is useful in connection with the universal Řmatrices, which are a class of solutions of the Yang–
Baxter equations when the spectral parameter disappears [2–4]. Braid group representations
also play an important role in the study of subfactors [5] and in quantum field theory [6, 7].
Most importantly, the Birman–Wenzl algebras Cf (r, q) and the quantum groups of B, C,
and D types are in Schur–Weyl–Brauer duality. Let Uq be a quantum group corresponding
to a finite-dimensional complex semisimple Lie algebra of type Bn, Cn, or Dn, and let V
be the irreducible representation of Uq corresponding to the fundamental weight. Then the
centralizer algebra Cf (Uq) = EndUq (V

⊗f ) is isomorphic to a quotient of the Birman–Wenzl
algebra Cf (qn−1, q).

0305-4470/01/346585+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6585
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Representations of Cf (r, q) was first studied by Murakami [8], and then by Wenzl [5].
Irreducible representations of Cf (r, q) in the standard basis Cf (r, q) ⊃ Cf−1(r, q) ⊃ · · · ⊃
C2(r, q)was constructed in [9] by using the induced representation method, and then by Leduc
and Ram [10] using the ribbon Hopf algebra approach. In this series of papers, we shall first
construct irreducible representations of Cf (r, q) in the non-standard basis for r and q not
being roots of unity. A procedure for the evaluation of subduction coefficients (SDCs) of
Cf (r, q) ↓ Cf1(r, q)×Cf2(r, q)will be proposed based on the linear equation method (LEM).
Then, we shall use the powerful Schur–Weyl–Brauer duality relation between Cf (r, q) and
the quantum groups Oq(n) or Spq(2m) to derive Racah coefficients of Oq(n) and Spq(2m)
in paper (II), which were never studied before. In this paper, it is assumed that r and q are
arbitrary complex numbers, and not roots of unity.

2. The Birman–Wenzl algebras Cf (r, q) in the standard basis

Recall that braid relations among generators gi (i = 1, 2, . . . , f − 1) of braid group Bf can
be written as

gigi+1gi = gi+1gigi+1

gigj = gjgi for |i − j | � 2.
(1)

When one more relation, namely the cubic equation

(gi − r−1)(gi + q−1)(gi − q) = 0 (2)

is applied to gi (i = 1, 2, . . . , f − 1), they generate the Birman–Wenzl algebra Cf (r, q). One
knows from [5] that Cf (r, q) is semisimple, and has the same decomposition into full matrix
rings as the Brauer algebra Df discussed in [11–13]. When r and q are complex numbers,
which are not roots of unity, one has

Cf (r, q)
∼=
⊕
λ∈�f

Cf,λ(r, q) (3)

where Cf,λ(r, q) is a full matrix ring and �f is the union of the set of all Young diagrams with
f, f − 2, f − 4, . . . , 1 or 0 boxes. If Vλ is a simple Cf,λ(r, q) module, it decomposes as a
Cf−1(r, q) module in the form

Vλ =
⊕
µ↔λ

Vµ (4)

where Vµ is a simple Cf−1,µ(r, q) module, and µ runs over all diagrams that can be obtained
by adding or removing one box to or from λ. These facts enable us to construct irreducible
representations of Cf (r, q) in the standard basis Cf (r, q) ⊃ Cf−1(r, q) ⊃ · · · ⊃ C2(r, q)

by using the induced representation method [9]. In this case, auxiliary elements ei for
i = 1, 2, . . . , f − 1, are helpful in the construction of the basis vectors, which are defined by

ei = 1 − gi − g−1
i

q − q−1
. (5)

Basic relations between gi and ei are

eigi = r−1ei eig
±
i ei = r±ei . (6)

It should be noted that Hecke algebra Hf (q) is a subalgebra of Cf (r, q). Therefore, an
irrep [λ] of Hf (q) is also the same irrep of Cf (r, q) when the corresponding Young diagram
of the irrep [λ] contains exactly f boxes. Irreducible representations in the standard basis
Hf (q) ⊃ Hf−1(q) ⊃ · · · ⊃ H2(q) of Hecke algebras have been constructed in [5]. These
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irreps are also the same irreps ofCf (r, q)with ei = 0 for i = 1, 2, . . . , f −1. In the following,
we list non-trivial matrix representations of [λ] for Cf (r, q) with f − 2, f − 4, . . . , 1 or 0
boxes, for f � 4, where only upper triangular parts of the matrices are shown because the
representation is symmetric, which, along with the matrix representations of Hecke algebras
given in [5], will be useful for our purpose.
1. f = 2, {λ} = {0} with dim{0} = 1. The matrix elements of g1 and e1 are

g1 = r−1 e1 = x (7a)

where

x = 1 +
r − r−1

q − q−1
. (7b)

2. f = 3, {λ} = {1} with dim{1} = 3. The matrix elements of g2 and e2 are

g2 =




− q−q−1

(q−1+r−1)(r−1−q) −
√
(r2−1)(rq3−1)q−2r−1x−1

(q2−1)(qr−1)[2]

√
q2(r2−1)(q3+r)
(q2−1)(q+r)r[2]x

r−1q−1(r−1−q−1)

(r−1−q)[2]
r−1

q[2]

√
(q3r−1)(r+q3)

(q+r)(qr−1)
qr−1(r−1+q)
[2](q−1+r−1)


 (8a)

e2 =




− (q−q−1)r−1

(q−r−1)(r−1+q−1)
−
√
(r2−1)(rq3−1)r−1x−1

(q2−1)(qr−1)[2] −
√

(r2−1)(q3+r)
(q2−1)(q+r)rx[2]

(r2−1)(rq3−1)
(q2−1)(qr−1)r[2]

r2−1
r[2](q2−1)

√
(q3r−1)(r+q3)

(q+r)(qr−1)
(r2−1)(q3+r)

[2](q2−1)r(q+r)


 (8b)

where the matrix is arranged in the following order of the basis vectors:

|1〉 =
∣∣∣∣ [1]
[0]

〉
|2〉 =

∣∣∣∣ [1]
[2]

〉
|3〉 =

∣∣∣∣ [1]
[12]

〉
. (9)

3. f = 4, {λ} = {0} with dim{0} = 3. The matrix elements of g3 and e3 are

g3 =
(
r−1

q

−q−1

)
e3 =

(
x

0
0

)
(10a)

where the matrix is arranged in the following order of the basis vectors:

|1〉 =
∣∣∣∣∣
[0]
[1]
[0]

〉
|2〉
∣∣∣∣∣
[0]
[1]
[2]

〉
|3〉 =

∣∣∣∣∣
[0]
[1]
[12]

〉
. (10b)

4. f = 4, {λ} = {2} with dim{2} = 6. The matrix elements of g3 and e3 are

g3 =




q 0 0 0 0 0

(r−q)r2q2(q2−1)
(r2−1)(q3r−1)

0

√
(q2r2−1)(1+q2)(qr−1)(q5r−1)

[3]q4(rq3−1)2(r2−1)

√
q2(r−q)(q3+r)(qr−1)(r2q2−1)

[3](q3r−1)(r2−1)2
0

r2q−1(q2−1)
r2−1

0 0 −
√
(r2−q2)(q2r2−1)

q(r2−1)

q−3r−1(r−q)
[3](q3r−1)

−
√
(1+q2)(r−q)(q3+r)(q5r−1)
q6[3]2r2(q3r−1)(r2−1)

0

(q2r2−1)(q2+1)−qr(q2−1)
[3]r(r2−1)

0

1−q2

q(r2−1)




(11a)
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e3 =




0 0 0 0 0 0

(q4−1)r(qr−1)
q(q3r−1)(r2−1)

0

√
(1+q2)(qr−1)(q5r−1)(q2r2−1)

[3]q2(rq3−1)2(r2−1)
−
√
(q2+1)2(r−q)(q3+r)(qr−1)(r2q2−1)

[3]q4(q3r−1)(r2−1)2
0

0 0 0 0

(q2r2−1)(q5r−1)
(q2−1)q[3]r(q3r−1)

−
√
(1+q2)(r−q)(r+q3)(q2r2−1)2(q5r−1)
(q2−1)2q4[3]2r2(q3r−1)(r2−1)

0

(1+q2)(r−q)(r+q3)(q2r2−1)
q3(q2−1)[3]r(r2−1)

0

0




(11b)

where the matrix is arranged in the following order of the basis vectors:

|1〉 =
∣∣∣∣∣
[2]
[1]
[0]

〉
|2〉 =

∣∣∣∣∣
[2]
[1]
[2]

〉
|3〉 =

∣∣∣∣∣
[2]
[1]
[12]

〉

|4〉 =
∣∣∣∣ [2]
[3]

〉
|5〉 =

∣∣∣∣ [2]
[21]1

〉
|6〉 =

∣∣∣∣ [2]
[21]2

〉
.

(11c)

5. f = 4, {λ} = {11} with dim{11} = 6. The matrix elements of g3 and e3 are

g3 =




−q−1 0 0 0 0 0
(q2−1)r2

q(r2−1)
0 −

√
(q2r2−1)(r2−q2)

q(r2−1)
0 0

(q2−1)r2q−2(qr+1)
(r2−1)(q3+r)

0 −
√
(q+r)(qr+1)(q3r−1)(r2−q2)

[3]q6(q3+r)(r2−1)2

√
(q+r)(r2−q2)(q5+r)(1+q2)

[3](q3+r)2(r2−1)

− q2−1
q(r2−1)

0 0

(r2−q2)(1+q2)+rq(1−q2)

[3]q4r(r2−1)

√
(1+q2)(1+qr)(q3r−1)(q5+r)
q2r2(q3+r)(r2−1)[3]2

q5(1+qr)
[3]r(q3+r)




(12a)

e3 =




0 0 0 0 0 0
0 0 0 0 0

(q4−1)r(q+r)
q(q3+r)(r2−1)

0 − 1+q2

q(r2−1)

√
(q+r)(1+qr)(q3r−1)(r2−q2)

[3]q2(q3+r)
−
√
(1+q2)(q+r)(q5+r)(r2−q2)

q2[3](q3+r)2(r2−1)

0 0 0

(1+q2)(r2−q2)(1+qr)(q3r−1)
q(q6−1)r(r2−1)

r2−q2

q6−1

√
(1+q2)(q5+r)(1+qr)(q3r−1)

r2(q3+r)(r2−1)

q(q5+r)(r2−q2)

(q2−1)q2[3]r(q3+r)




(12b)

where the matrix is arranged in the following order of the basis vectors:

|1〉 =
∣∣∣∣∣
[12]
[1]
[0]

〉
|2〉 =

∣∣∣∣∣
[12]
[1]
[2]

〉
|3〉 =

∣∣∣∣∣
[12]
[1]
[12]

〉

|4〉 =
∣∣∣∣ [12]

[3]

〉
|5〉 =

∣∣∣∣ [12]
[21]1

〉
|6〉 =

∣∣∣∣ [12]
[21]2

〉
.

(12c)

3. The Birman–Wenzl algebra Cf (r, q) in the non-standard basis and SDCs of
Cf (r, q) ⊃ Cf1 (r, q) × Cf2 (r, q)

An irrep of Cf (r, q) is reducible with respect to its subalgebra Cf1(r, q) × Cf2(r, q) with
f1 + f2 = f . The reduction is denoted by

[λ]f−2k ↓ Cf1(r, q)× Cf2(r, q) =
∑
λ1λ2

{λ1λ2λ}([λ1], [λ2]) (13)

where it is clearly indicated in the subscript of [λ] that there are f − 2k boxes contained in
the Young diagram of [λ]. The orthogonal subduced basis Cf (r, q) ⊃ Cf1(r, q) × Cf2(r, q)
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is called the non-standard basis of Cf (r, q), which follows the same definition [14] of that for
Brauer algebras Df (n). The basis vectors of (13) are denoted by∣∣∣∣[λ]f−2k

τ [λ1] [λ2]
ρ1 ρ2

〉
r,q

(14)

where [λi]ρi for i = 1, 2, can be understood as labels of the standard basis [9] of Cf1(r, q),
and Cf2(r, q), respectively, and τ = 1, 2, . . . , {λ1λ2λ} is the multiplicity label needed in the
reduction (13).

In order to determine matrix entries of Cf (r, q) in the non-standard basis, one can expand
the non-standard basis in terms of the standard basis:∣∣∣∣[λ]f−2k

τ [λ1] [λ2]
ρ1 ρ2

〉
r,q

=
∑
ρ

∣∣∣∣ [λ]f−2k

ρ

〉
r,q

〈
[λ]f−2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(r,q)

. (15)

The expansion coefficient is called the [λ]f−2k ↓ [λ1] × [λ2] SDC, or the transformation
coefficient between the standard and non-standard bases of Cf (r, q). The SDCs satisfy the
orthogonality relations:∑
λ2ρ2τ

〈
[λ]f−2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(r,q)

〈
[λ]f−2k

ρ ′

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(r,q)

= δρρ ′ (16a)

∑
ρ

〈
[λ]f−2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(r,q)

〈
[λ]f−2k

ρ

∣∣∣∣ τ ′[λ1] [λ′
2]

ρ1 ρ ′
2

〉
(r,q)

= δλ2λ
′
2
δρ2ρ

′
2
δττ ′ . (16b)

Once the SDCs are known, the matrix elements of Cf (r, q) in the non-standard basis can be
derived by using the results of those in the standard basis given in [9, 10].

Similar to the procedure shown in [14], the LEM can also be applied to evaluate SDCs of
Cf (r, q) ⊃ Cf1(r, q)× Cf2(r, q).

Assume {g1, g2, . . . , gf1−1, e1, e2, . . . , ef1−1}, and {gf1+1, gf1+2, . . . , gf−1, ef1+1,
ef1+2, . . . , ef−1} are two sets of basic elements of Cf1(r, q), and Cf2(r, q), respectively.
By applying Qi = gi , or ei with i = 1, 2, . . . , f1 − 1, and Qj = gj or ej with
j = f1 + 1, f1 + 2, . . . , f − 1 to (15), and then multiplying the resultants from the left
with

r,q

〈
[λ]f−2k

ρ

∣∣∣∣
we obtain two sets of linear equations∑
ρ ′

1

(Qi)ρ ′
1ρ1

〈
[λ]f−2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ ′

1 ρ2

〉
(r,q)

=
∑
ρ ′
(Qi)ρ ′ρ

〈
[λ]f−2k

ρ ′

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(r,q)

(17a)∑
ρ ′

2

(
Qj−f1

)
ρ ′

2ρ2

〈
[λ]f−2k

ρ

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ ′

2

〉
(r,q)

=
∑
ρ ′

(
Qj

)
ρ ′ρ

〈
[λ]f−2k

ρ ′

∣∣∣∣ τ [λ1] [λ2]
ρ1 ρ2

〉
(r,q)

(17b)

where (Qk)ρ ′ρ are matrix elements of Qk in the corresponding standard basis. The linear
relations given in (17) or a part of the so-called intertwining relations among SDCs together
with the unitarity conditions given in (16) are sufficient in solving these SDCs as has been
shown in [14] for the corresponding Brauer algebra case. Using (16) and (17) and the matrix
entries ofQk in the standard basis, one can derive all SDCs for given irreps [λ]f−2k , [λ1], and
[λ2], when the reduction [λ] ↓ [λ1] × [λ2] is multiplicity-free. It should be noted that the



6590 Lianrong Dai et al

Table 1. SDCs of C3(r, q) ⊃ C1(r, q)× C2(r, q).

C3\C1 × C2 [1] [0] [1] [2] [1] [12]

[1] [0] 1
[1] [2] 1
[1] [12] 1

Table 2. SDCs of C3(r, q) ⊃ C1(r, q)× C2(r, q).

C3\C1 × C2 [1] [0] [1] [2] [1] [12]

[1] [0] − (q2 − 1)r

(q + r)(qr − 1)
−
√
(r2 − 1)(q3r − 1)

[2](r + q)(qr − 1)2

√
(r2 − 1)(q3 + r)

[2](qr − 1)(q + r)2

[1] [2]

√
(r2 − 1)(q3r − 1)

[2](r + q)(qr − 1)2
r − q

[2](qr − 1)

√
(q3 + r)(q3r − 1)

q2[2]2(q + r)(qr − 1)

[1] [12]

√
(r2 − 1)(q3 + r)

[2](qr − 1)(q + r)2
−
√

(q3 + r)(q3r − 1)

q2[2]2(r + q)(qr − 1)
− 1 + qr

[2](r + q)

Table 3. SDCs of C4(r, q) ⊃ C2(r, q)× C2(r, q).

C4\C2 × C2 [2] [2] [12] [12] [0] [0]

[0] [1] [2] 1
[0] [1] [12] 1
[0] [1] [0] 1

Table 4. SDCs of C4(r, q) ⊃ C2(r, q)× C2(r, q).

C4\C2 × C2 [12] [2] [12] [12] [0] [2]

[2] [21]2

√
q2r2 − 1

q[2](r2 − 1)

√
r2 − q2

q[2](r2 − 1)

[2] [1] [12] −
√

r2 − q2

q[2](r2 − 1)

√
q2r2 − 1

q[2](r2 − 1)

[2] [1] [0] 1

Table 5. SDCs of C4(r, q) ⊃ C2(r, q)× C2(r, q).

C4\C2×C2 [2] [2] [2] [12] [2] [0]

[2] [3]

√
q(r − q)

[3](q3r − 1)

√
(q3 + r)(q5r − 1)

q2[3](q + r)(q3r − 1)

√
(1 + qr)(q5r − 1)

q[3](q + r)(q3r − 1)

[2] [21]1

√
(q3 + r)(q5r − 1)

q4[2][3](r2 − 1)

√
(r − q)(q3r + 1)2

q3[2][3](r2 − 1)(r + q)
−
√
(1 + q2)(r − q)(q3 + r)(1 + qr)

q3[3](r2 − 1)(r + q)

[2] [1] [2]

√
(r − q)(qr + 1)(q5r − 1)

q(1 + q2)(r2 − 1)(q3r − 1)
−
√

(q3 + r)(qr − 1)2(1 + qr)

q[2](r2 − 1)(r + q)(q3r − 1)

√
(q2 − 1)2(1 + q2)r2

q(r2 − 1)(q + r)(q3r − 1)

SDCs with k = 0 are the same as those of the corresponding Hecke algebras, of which some
examples were provided in [15]. In the multiplicity cases, the relations (17) provides with
linearly independent relations for fixed multiplicity label. The corresponding SDCs with the
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Table 6. SDCs of C4(r, q) ⊃ C2(r, q)× C2(r, q).

C4\C2 × C2 [2] [12] [2] [2] [0] [12]

[12] [1] [2]

√
q2r2 − 1

q[2](r2 − 1)
−
√

r2 − q2

q[2](r2 − 1)

[12] [21]1

√
r2 − q2

q[2](r2 − 1)

√
q2r2 − 1

q[2](r2 − 1)

[12] [1] [0] 1

Table 7. SDCs of C4(r, q) ⊃ C2(r, q)× C2(r, q).

C4\C2 × C2 [12] [12] [12] [2] [12] [0]

[12] [13] −
√

q(qr + 1)

q[3](r + q3)
−
√

(q5 + r)(q3r − 1)

q2[3](q3 + r)(qr − 1)

√
(q5 + r)(r2 − q2)

q[3](q + r)(q3 + r)(qr − 1)

[12] [21]2

√
(q3r − 1)(q5 + r)

q4[2][3](r2 − 1)

√
(r − q3)2(1 + qr)

q3[2][3](r2 − 1)(qr − 1)

√
[2](1 + qr)(q3r − 1)(r − q)

q2[3](r2 − 1)(qr − 1)

[12] [1] [12]

√
(r − q)(qr + 1)(q5 + r)

q2[2](r2 − 1)(q3 + r)
−
√

(r2 − q2)(r + q)(q3r − 1)

(1 + q2)(r2 − 1)(qr − 1)(q3 + r)
−
√

(q2 − 1)2(1 + q2)r2

q(r2 − 1)(q3 + r)(qr − 1)

Table 8. SDCs of C4(r, q) ⊃ C1(r, q)× C3(r, q).

C4\C1 × C3 [1] [1]0 [1] [1]2 [1] [1]12

[2] [1]0
(q2−1)r

(q+r)(qr−1) −
√

(q2−1)2r2(r−q)2
[2](q+r)(qr−1)2(q3r−1)(r2−1)

√
(q2−1)2r2(q3+r)

q2[2](q+r)2(qr−1)(r2−1)

[2] [1]2 −
√

(r2−1)(q3r−1)
[2](q+r)(qr−1)2

(q2−1)r(r−q)2
[2](qr−1)(q3r−1)(r2−1)

√
(q2−1)2r2(q3+r)(q3r−1)
q4[2]2(q+r)(qr−1)(r2−1)2

[2] [1]12 −
√

(r2−1)(q3+r)
[2](q+r)2(qr−1)

−
√

(r−q)2(q2−1)2r2(q3+r)
q2[2]2(r2−1)2(q+r)(qr−1)(q3r−1)

− (q2−1)r(qr+1)
q[2](q+r)(r2−1)

[2] [3] 0

√
[2](qr−1)(q5r−1)(q2r2−1)

q[3](q3r−1)2(r2−1)
0

[2] [21]1 0 −
√
(r−q)(q3+r)(q2r2−1)(qr−1)
q2[2]2[3](r2−1)2(q3r−1)

−
√

[3](r2−q2)(q2r2−1)
q2[2]2(r2−1)2

[2] [21]2 0 −
√
(r−q)(q3+r)(q2r2−1)(qr−1)
q2[2]2(r2−1)2(q3r−1)

√
(r2−q2)(q2r2−1)
q2[2]2(r2−1)2

fixed multiplicity label can be derived similarly. While the same relations hold for any other
multiplicity labels. In order to resolve the multiplicity ambiguity, the SDCs with different
multiplicity labels can be chosen to be orthogonal to each other. For example, the SDCs with
multiplicity two of H6(q) ↓ H3(q) × H3(q) for the reduction [321] ↓ [21] × [21] given
in [15] are also the SDCs of C6(r, q) ↓ C3(r, q)×C3(r, q) for the same irrep. In this case the
solution to the SDCs is not unique and depends on the phase convention and the orthogonal
basis chosen. One can always make orthogonal transformation to transform one set of SDCs
to another within the multiplicity space spanned by the multiplicity labels. For example, the
orthogonal transformations for the Wigner coefficients of SU(n) ⊃ SU(n − 1) within the
outer-multiplicity space were discussed in detail in [16]. A similar problem in symmetric
group was also discussed by McAven et al [17]. In this paper, we will only list SDCs of
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Table 9. SDCs of C4(r, q) ⊃ C1(r, q)× C3(r, q).

C4\C1 × C3 [1] [3] [1] [21]1 [1] [21]2

[2] [1]0 −
√

(qr+1)(q5r−1)
q[3](q+r)(q3r−1)

√
(r−q)(q3+r)(qr+1)
q2[3][2](r2−1)(q+r)

√
(r−q)(q3+r)(qr+1)
q2[2](q+r)(r2−1)

[2] [1]2

√
(q5r−1)(r−q)2(qr+1)
q[2][3](r2−1)(q3r−1)2

−
√

(r−q)3(q3+r)(qr+1)
q2[3][2]2(q3r−1)(r2−1)2

√
(r−q)(q3+r)(1+qr)(q3r−1)

q4[2]2(r2−1)2

[2] [1]12 −
√

(q3+r)(q5r−1)(q2r2−1)
q3[2][3](r2−1)(q3r−1)(r+q)

√
(r−q)(q3+r)2(q2r2−1)
q4[2]2[3](r2−1)2(q+r)

−
√
(qr−1)(r−q)(qr+1)3

q2[2]2(q+r)(r2−1)2

[2] [3] q(r−q)
[3](q3r−1)

√
[2](r−q)(q3+r)(q5r−1)
q3[3]2(q3r−1)(r2−1)

0

[2] [21]1

√
(r−q)(q3+r)(q5r−1)

q3[2][3]2(r2−1)(q3r−1)
(q2r2−1)[2]−r(q2−1)

q[2][3](r2−1)

√
[3](q2−1)2r2

q2[2]2(r2−1)2

[2] [21]2

√
(r−q)(q3+r)(q5r−1)
q3[2][3](r2−1)(q3r−1)

(q2r2−1)[2]−r(q2−1)
q[2](r2−1)

√
[3]

− r(q2−1)
q[2](r2−1)

Table 10. SDCs of C4(r, q) ⊃ C1(r, q)× C3(r, q).

C4\C1 × C3 [1] [1]0 [1] [1]2 [1] [1]12

[12] [1]0 − (q2−1)r
(q+r)(qr−1) −

√
(q3r−1)r2(q2−1)2

q2[2](q+r)(qr−1)2(r2−1)

√
(1+qr)2r2(q2−1)2

[2](q+r)2(qr−1)(q3+r)(r2−1)

[12] [1]2

√
(r2−1)(q3r−1)

[2](q+r)(qr−1)2
(q2−1)r(r−q)

[2](qr−1)(1+q2)(r2−1)

√
(q2−1)2r2(1+qr)2(q3r−1)

q2[2]2(q+r)(q3+r)(qr−1)(r2−1)2

[12] [1]12

√
(r2−1)(q3+r)

[2](q+r)2(qr−1)
−
√

(1−q2)2r2(q3r−1)(q3+r)
q4[2]2(r2−1)2(q+r)(qr−1)

− (q2−1)r(qr+1)2

[2](q+r)(r2−1)(q3+r)

[12] [21]1 0

√
(r2−q2)(q2r2−1)
q2[2]2(r2−1)2

−
√
(r2−q2)(r+q)(1+qr)(q3r−1)

q2[2]2(q3+r)(r2−1)2

[12] [21]2 0

√
[3](r2−q2)(q2r2−1)
q2[2]2(r2−1)2

−
√
(r2−q2)(r+q)(1+qr)(q3r−1)
q2[2]2[3](q3+r)(r2−1)2

[12] [13] 0 0

√
[2](r2−q2)(r+q)(q5+r)
q[3](q3+r)2(r2−1)

Table 11. SDCs of C4(r, q) ⊃ C1(r, q)× C3(r, q).

C4\C1 × C3 [1] [21]1 [1] [21]2 [1] [13]

[12] [1]0

√
(r−q)(1+qr)(q3r−1)
q2[2](qr−1)(r2−1)

−
√

(r−q)(1+qr)(q3r−1)
q2[2][3](qr−1)(r2−1)

√
q(r−q)(q5+r)

q2[3](q3+r)(qr−1)

[12] [1]2 −
√
(q−r)2(1+qr)(r2−q2)

q2[2]2(qr−1)(r2−1)2
−
√

(r2−q2(1+qr)(1−q3r)2

q4[2]2[3](qr−1)(r2−1)2

√
(r2−q2)(q5+r)(q3r−1)

q3[2][3](qr−1)(r2−1)(q3+r)

[12] [1]12

√
(r−q)(q3+r)(1+qr)(q3r−1)

q4[2]2(r2−1)2

√
(r−q)(1+qr)3(q3r−1)
q2[2]2[3](r2−1)2(q3+r)

−
√

(r−q)(q5+r)(qr+1)2

q[2][3](r2−1)(q3+r)2

[12] [21]1
r(q2−1)

(1+q2)(r2−1)
− (r2−q2)(1+q2)−qr(q2−1)

q2[2]
√

[3](r2−1)

√
(q5+r)(1+qr)(q3r−1)
q3[2][3](q3+r)(r2−1)

[12] [21]2

√
3r(q2−1)

(1+q2)(r2−1)
(r2−q2)(1+q2)−qr(q2−1)

q2[2][3](r2−1)
−
√

(q5+r)(1+qr)(q3r−1)
q3[2][3]2(q3+r)(r2−1)

[12] [13] 0

√
(1+q2)(q5+r)(1+qr)(q3r−1)

q4[3]2(q3+r)(r2−1)
q(1+qr)

[3](q3+r)
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Cf (r, q) for the irreps with k �= 0 and f � 4 because k = 0 SDCs are the same as those of
Hecke algebra Hf (q), which are r-independent and have been tabulated in [15].

Similar to the Brauer algebra case shown in [14], the SDCs of Cf (r, q) ⊃ Cf−1(r, q) ×
C1(r, q) are trivial with〈

[λ]
ρ

∣∣∣∣ τ [λ1] [1]
ρ1

〉
(r,q)

= δρ,[λ1]ρ1 . (18)

Other non-trivial SDCs of Cf (r, q) ⊃ Cf1(r, q) × Cf2(r, q) with k �= 0 and f � 4 were
derived by using equations (16) and (17), together with the matrix entries ofQk in the standard
basis of Cf (r, q) given in section 2. The phase convention used for the SDCs of Cf (r, q) is
the same as that of the Brauer algebra Df (n) shown in [14]. The package Mathematica was
implemented in the formalized algorithm based on our procedure. The results are listed in
tables 1–11.

4. Conclusions

In this paper, the Birman–Wenzl algebras Cf (r, q) in the non-standard basis are discussed.
The SDCs of Cf (r, q) ⊃ Cf1(r, q) × Cf2(r, q) with f1 + f2 = f and f � 4 are derived by
using the LEM. The SDCs ofCf (r, q)will be useful in evaluating Racah coefficients ofOq(n)
and Spq(2m) by using the Schur–Weyl–Brauer duality relation between the Birman–Wenzl
algebras with r = qn−1 and the corresponding quantum groups of B, C, D types when q is
not a root of unity, which have never been studied. The Racah coefficients will be discussed
in our next paper.
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